Newton-Type Methods for Nonlinear Least Squares Using Restricted Second Order Information

نویسنده

  • Hubert Schwetlick
چکیده

In the paper, a special approximated Newton method for minimizing a sum of squares f(x) = 1 2 ‖F (x)‖ = 1 2 Pm i=1[Fi(x)] 2 is introduced. In this Restricted Newton method, the Hessian H = G + S of f where G = (F ′)T F ′, S = F ◦ F ′′, is approximated by ARN = G + B where B = Z2Z T 2 SZ2Z T 2 is the restriction of the second order term S on the subspace imZ2 spanned by the eigenvectors of the GaussNewton matrix G which belong to the q smallest eigenvalues of G. Some properties of this approximation are derived, and a related trust region method is tested on hand of some test functions from the literature.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Preconditioning issues in the numerical solution of nonlinear equations and nonlinear least squares

Second order methods for optimization call for the solution of sequences of linear systems. In this survey we will discuss several issues related to the preconditioning of such sequences. Covered topics include both techniques for building updates of factorized preconditioners and quasi-Newton approaches. Sequences of unsymmetric linear systems arising in NewtonKrylov methods will be considered...

متن کامل

Approximate Gauss-Newton Methods for Nonlinear Least Squares Problems

The Gauss–Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an...

متن کامل

The University of Reading Approximate Gauss-Newton methods for nonlinear least squares problems

The Gauss-Newton algorithm is an iterative method regularly used for solving nonlinear least squares problems. It is particularly well-suited to the treatment of very large scale variational data assimilation problems that arise in atmosphere and ocean forecasting. The procedure consists of a sequence of linear least squares approximations to the nonlinear problem, each of which is solved by an...

متن کامل

Using an Efficient Penalty Method for Solving Linear Least Square Problem with Nonlinear Constraints

In this paper, we use a penalty method for solving the linear least squares problem with nonlinear constraints. In each iteration of penalty methods for solving the problem, the calculation of projected Hessian matrix is required. Given that the objective function is linear least squares, projected Hessian matrix of the penalty function consists of two parts that the exact amount of a part of i...

متن کامل

Semi-smooth Second-order Type Methods for Composite Convex Programs

The goal of this paper is to study approaches to bridge the gap between first-order and second-order type methods for composite convex programs. Our key observations are: i) Many well-known operator splitting methods, such as forward-backward splitting (FBS) and Douglas-Rachford splitting (DRS), actually define a possibly semi-smooth and monotone fixed-point mapping; ii) The optimal solutions o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003